

How
managed

is your
D-Bus?

Alp Toker

What is D-Bus?

D-Bus is an inter-process communication
framework that lets applications interface with the
system event bus as well as allowing them to talk
to one another in a peer-to-peer configuration.

Application A

Application B

System busSession bus

What is managed D-Bus?

● A clean-room MIT/X11 implementation of the D-
Bus protocol in C# providing full integration with
the CLR/.NET type system

● Runs on the Mono and Microsoft Common
Language Runtime platforms

● Provides seamless, high-performance access
to/from D-Bus using any of several
programming languages including C#,
IronPython, Boo, VB, Nemerle...

And..?

● Used by over a dozen GNOME applications –
everything from single instance detection to
complex instant messaging tasks and object
componentry

● Managed D-Bus was the first independent
implementation of D-Bus, and has encouraged
other platform developers who wish to avoid the
reference implementation

● Aims to provide a compelling alternative to
libdbus

Managed D-Bus features

● Direct mapping to/from C# interfaces and types

● Support for D-Bus structs using C# structures

● Support for typed D-Bus dictionaries using C#
generics

● Mapping to/from D-Bus signals to C# events

● Mapping to/from D-Bus errors/CLR exceptions

● Good performance thanks to dynamically compiled
optimised marshalers

● Full thread-safety and concurrent messaging support

● Portable: truly build-once run-anywhere

Licensing: Getting it right

libdbus, reference implementation
GPL + AFL = loss

Managed D-Bus
MIT X11 = win

dbus-java, ruby-dbus
LGPL, very reasonable

Please put
me out of
my misery

GLib integration

● Managed D-Bus encourages single-threaded
asynchronous messaging where possible

● ndesk-dbus-glib is a simple package that
integrates ndesk-dbus with the GLib main loop

● Has its own release cycle and integration with
other main loops is possible without
modification of the core managed D-Bus library

● Popular with Gtk# applications
● Should not be used in headless apps

Example: Hooking up to HAL

● HAL has a notoriously bad D-Bus API
● We will use it as an example anyway

...

Defining a D-Bus interface:
Hal.Device

/* an Interface attribute is applied to mark the D-Bus interface name */
[Interface ("org.freedesktop.Hal.Device")]
public interface Device
{
 /* event definitions map to D-Bus signals */
 event PropertyModifiedHandler PropertyModified;

 /* properties and method calls map to D-Bus calls */
 /* the D-Bus type system is capable of representing generic dictionaries */
 IDictionary<string, object> AllProperties { get; }

 /* further methods and signals omitted for brevity */
}

In this example we are only going to import the interface, but
exporting it would simply be a matter of implementing the
interface in any given class and Register()ing it with the bus.

...and necessary structures and
delegates

/* D-Bus supports arbitrary structures */
public struct PropertyModification
{
 public string Key;
 public bool Added;
 public bool Removed;
}

public delegate void PropertyModifiedHandler (int modificationsLength,
 PropertyModification[] modifications);

Bringing it all together:
Using HAL

/* request a proxy object for the device manager from the system message bus */
Manager mgr = Bus.System.GetObject<Manager> ("org.freedesktop.Hal",
 new ObjectPath ("/org/freedesktop/Hal/Manager"));

/* enumerate all devices */
foreach (Device dev in mgr.AllDevices) {
 /* print the path of the object */
 Console.WriteLine (dev.ToString ());

 /* hook up to the PropertyModified signal of the device */
 dev.PropertyModified += delegate (int modificationsLength,
 PropertyModification[] modifications) {
 /* when properties are modified, print the changes */
 Console.WriteLine ("Properties changed on device {0}:", dev);

 foreach (PropertyModification modification in modifications)
 Console.WriteLine (modification.Key);
 };
}

D-Bus XML Introspection

● Managed D-Bus generates XML introspection
data dynamically on demand from ordinary
C#/.NET interfaces

 <!DOCTYPE node PUBLIC "-//freedesktop//DTD D-BUS Object
Introspection 1.0//EN"

"http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd">
 <node name="/org/freedesktop/sample_object">
 <interface name="org.freedesktop.SampleInterface">
 <method name="Frobate">
 <arg name="foo" type="i" direction="in"/>
 <arg name="bar" type="s" direction="out"/>
 <arg name="baz" type="a{us}" direction="out"/>
 <annotation name="org.freedesktop.DBus.Deprecated"
value="true"/>
 </method>
 <method name="Bazify">
 <arg name="bar" type="(iiu)" direction="in"/>
 <arg name="bar" type="v" direction="out"/>
 </method>
 <method name="Mogrify">
 <arg name="bar" type="(iiav)" direction="in"/>
 </method>
 <signal name="Changed">
 <arg name="new_value" type="b"/>
 </signal>
 <property name="Bar" type="y" access="readwrite"/>
 </interface>
 <node name="child_of_sample_object"/>
 <node name="another_child_of_sample_object"/>
 </node>

D-Bus: The protocol

● Binary protocol
● Support for big/little endian messages
● Lies between raw sockets and CORBA in terms

of complexity
● Less complex/featured than SOAP and WCF
● More featureful than eg. XML RPC

Conventional
Name

Code Description

BYTE 121 (ASCII 'y') 8-bit unsigned integer

BOOLEAN 98 (ASCII 'b') Boolean value, 0 is FALSE and 1 is TRUE. Everything else is invalid.

INT16 110 (ASCII 'n') 16-bit signed integer

UINT16 113 (ASCII 'q') 16-bit unsigned integer

INT32 105 (ASCII 'i') 32-bit signed integer

UINT32 117 (ASCII 'u') 32-bit unsigned integer

INT64 120 (ASCII 'x') 64-bit signed integer

UINT64 116 (ASCII 't') 64-bit unsigned integer

DOUBLE 100 (ASCII 'd') IEEE 754 double

STRING 115 (ASCII 's')
UTF-8 string (must be valid UTF-8). Must be nul terminated and
contain no other nul bytes.

OBJECT_PATH111 (ASCII 'o') Name of an object instance

SIGNATURE 103 (ASCII 'g') A type signature

ARRAY 97 (ASCII 'a') Array

STRUCT
114 (ASCII 'r'), 40 (ASCII '('), 41
(ASCII ')')

Struct

VARIANT 118 (ASCII 'v') Variant type (the type of the value is part of the value itself)

DICT_ENTRY
101 (ASCII 'e'), 123 (ASCII '{'), 125
(ASCII '}')

Entry in a dict or map (array of key-value pairs)

?

Single precision floating point

● A managed D-Bus protocol extension
● Type code 'f'
● 32-bit single precision floating point
● Defined by IEEE 754
● Essential for supporting the full range of types

in modern execution environments
● Now supported by dbus-java, upcoming

support in dbus-ruby, dbus-python and
probably other implementations

Talking D-Bus

Body

Header

D-Bus message

IronPython and the DLR

● IronPython is an
Open Source
implementation of
Python targeting the
CLR

● Predecessor to the
Dynamic Language
Runtime

● Managed D-Bus can
support these
platforms

● Can dynamically
introspect remote
interfaces and
construct local
proxies for them,
much like dbus-
python

Legacy-free, API/ABI stable

● Modern, clean API based around the final D-
Bus terminology

● No concept of a “service” in D-Bus 1.0 – our
API is free of this term

● Very few entry points, all with well-defined
behaviour

● The low-level D-Bus API is internal ie. not
available in the public API

Hindsight is 20/20
● Learning from previous attempts

– Joe Shaw's original dbus-sharp binding
● A good start, but became unmaintained
● Memory management issues and lack of features

(structures, dictionaries etc.)

– Adam Lofts' dbus-sharp (part of the Chatter IM
client)

● Closer to a modern dbus-sharp API; Showed that you
don't have to expose low-level API to have a usable
binding

● Still suffered from some memory management issues
and lack of features

Distributions and packaging

● Shipping with Ubuntu Feisty as part of 'main'
● Sebastian Dröge created and continues to

maintain the Debian/Ubuntu packages
libndesk-dbus1.0-cil and libndesk-dbus-glib1.0-
cil

● Going into SLED/OpenSUSE
● Going into Fedora
● Gentoo ebuild available

Part of the future GNOME
mobile/embedded platform?

● Works well on eg. the Nokia 770/N800

● Independent of the version of libdbus installed on the device
(which has been out of pace with desktop versions in the past)

● High performance thanks to the Mono ARM JIT

● Build on the desktop, run on the device: No cross-
compilation

GNOME: It's all about the
applications

● Infrastructure code like IPC should just work:
application developers are not expected to
have expertise in this area.

● Infrastructure code is easy and boring... let's
take a look at some applications

Users of managed D-Bus:
Tomboy

Uses D-Bus for single instance detection, shell remote
control and more recently for note synchronisation with
Conduit

Users of managed D-Bus:
F-Spot

Uses D-Bus for single instance detection, shell remote
control. There is current interest in exposing more of
F-Spot's database to the desktop.

Users of managed D-Bus:
Beagle/Xesam

Beagle is working towards supporting the Xesam search
specification using managed D-Bus, enabling
interoperability between different desktop search systems
and user interfaces.

Complex users of managed D-Bus:
Banshee

Aaron Bockover's next-generation Banshee backend
exposes its media collection framework to the desktop
over D-Bus as a re-usable component

Complex users of managed D-Bus:
Telepathy

Telepathy-based IM
clients and
connection
managers have
proved to be the
acid test for
completeness of the
binding

Facebook connection manager
using Mono.Facebook

Complex users of
managed D-Bus:

Banter
● Telepathy-based

● Uses telepathy-sharp

● The first application to make
heavy use of managed D-Bus
thread safety and concurrency
features

Applications and bindings (1)
● telepathy-sharp

● Tapioca VoIP and IM application development framework (tapioca-sharp)

● Landell VoIP and IM client using Gtk#

● Gnome NetworkManager binding

● Gnome Power Manager binding

● Banshee provides and uses a media player API, and uses Gnome Power Manager, Gnome
NetworkManager, Helix, notify-sharp, org.gnome.SettingsDaemon

● Helix D-Bus for remote control of the media stream

● hal-sharp is provides access to HAL, the Hardware Abstraction Layer

● NotifySharp provides a client implementation for Desktop Notifications and works as a libnotify
client replacement

● F-Spot personal photo management application, for single-instance detection [1]

● Tomboy simple note taking application, for remote control and single-instance detection

● dcsharp file sharing client using the Direct Connect protocol, for notifications, single instance and
remote control

● LAT LDAP Administration Tool

● VMX Manager, Virtual Machine Manager), GNOME SVN

Applications and bindings (2)
● NewStuffManager, a plugin update/download service

● last-exit, a music player for Last.fm

● Muine, a music player for GNOME

● The Fuzz, process security manager with GUI

● GShare, file sharing utility

● Chatter (Telepathy GnomeUI) VoIP and IM client using Gtk#

● Babuine TimeTracker

● gnome-keyring-sharp GNOME Keyring implementation, to get the keyring socket address

● Novell eIDconfig-belgium configuration toolkit for the Belgian eID middleware

● PodSleuth iPod model information discovery/export tool, using hal-sharp

● Novell Banter collaboration client (Telepathy)

● circ IRC client

● Beagle xesam-adapter desktop search API

● Many more?

Get managed D-Bus!

http://www.ndesk.org/DBusSharp

IRC: #managed-dbus / GIMPNet

Managed D-Bus
stable, fast, fun to use

