

WebKit GTK+

Alp Toker

Developing hybrid Web/GTK+
rich internet applications

February 2008
FOSDEM
Brussels

WebCore
content engine

GTK+ applications
C, C#, C++, Vala, Python

JavaScriptCore
portable C API

WebKit
GObject API

WebKit language bindings
Vala bindings

– Maintained by Jürg Billeter

– Covers core API

Python bindings

– Created by the OLPC team

– Maintained by Jan Alonzo

C#/CLR bindings (WIP)

– JS bridge available

JavaScript bindings

– DOM only (part of JavaScriptCore)

WebKit widget
and related classes

Language binding
features

DOM binding

JavaScript runtime
 bridge

1

2

3

Introducing WebView

Write a browser in a dozen lines

import gtk
import webkit

view = webkit.WebView()

sw = gtk.ScrolledWindow()
sw.add(view)

win = gtk.Window(gtk.WINDOW_TOPLEVEL)
win.add(sw)
win.show_all()

view.open("http://planet.gnome.org/")
gtk.main()

WebView modes: Scrollable

Packed in a GtkScrolledWindow

– Provides a full-featured browser engine for document
display and editing

WebView modes: Packed

Packed directly into the UI

– Acts as an integral part of the surrounding GTK+ UI

– Place Web content in amongst GTK+ widgets

Web content / GTK+ size request interop
(landing soon)

Develop and design in parallel
● Let programmers work on the core
● Let designers produce UI elements using Web skills

When to use a WebView

When do you use straight GTK+?

When does Web content enrich the experience?

Great power; great responsibility

WebView isn't the right tool for every job

– Continue to use GtkTextView for light viewing and
editing

– Use GtkTreeView and GtkIconView unless you really
need a custom look

“The idea was that anybody who used
the web would have a space where
they could write and so the first
browser was an editor, it was a writer
as well as a reader.”

Tim Berners-Lee

A writer as well as a reader

Enable WebKit's powerful content editor with one line of
code

WebView is designed from the ground up to work as an
enhanced GtkTextView

WebView
(like GtkTextView)

WebFrame
(like GtkTextBuffer)

WebFrame
(like GtkTextBuffer)

Edit with style

webkit_web_view_set_editable (WEB_VIEW (view), TRUE);

Push and retrieve HTML/SVG content with simple
accessors or use the upcoming GIO streaming
interface

Perform formatting operations

– With the basic editing command API

– Or by manipulating the upcoming GObject DOM directly

Work on your application's killer features and leave
formatting to WebView

Using WebFonts

SVG/TTF custom fonts are a W3C recommendation

Apply a distinctive look without compromising usability

Continue to internationalise with gettext and .po files

Text selection and editing works as usual

No installation required

@font-face {
 font-family: 'Bitstream Vera Sans';
 src: url('http://www.freedesktop.org/~alp/tmp/Vera.ttf') format(truetype);
}

h1 {
 font-family: 'Bitstream Vera Sans', sans-serif;
}

Custom fonts in action
SVG fonts
Easy to design with tools like Inkscape WebFonts

TrueType fonts on the Web

GObject DOM

Existing DOM bindings

– ObjC DOM, used extensively in Safari/Mac

– COM DOM (new), used on Windows

Upcoming GObject DOM features

– Complete access to the DOM (all levels)

– Stable API

LIVE DEMO

Apply settings with ease

Use WebSettings to group settings for multiple
WebViews

Keep granular settings per WebView or enforce
global settings when necessary
(makes porting Gecko-based applications a breeze)

WebView
widget

WebView
widget

WebSettings
(like GtkSettings)

Perfectly native widget styling

Go asynchronous

Use WebDecision objects to delegate actions
requiring user input or network queries

– Authentication challenges

– Navigation requests

– Script alert and print dialogs

A dream come true for browser developers

Allows programmers to eliminate modality

Lets users get on with what they're doing

HTML5 video with GStreamer
Open Source

Web video without
proprietary plugins

Versatile
Create stylish DVD/DVB
players, video
conferencing tools

Feature developed by
Collabora

WebKit for browser engineers

Engine core written in a sensible dialect of C++

Approachable to C hackers

Follows a coherent coding style

Project-wide refactoring and reorganisation is
encouraged

Internal APIs are “informally” abstracted and
change frequently while the public API is strictly
stable (similar policy to the Linux kernel)

Browse with Epiphany

Epiphany, a light-weight Web
browser for the GNOME desktop

Originally a GTK+ UI around the
Gecko rendering engine

Experimental WebKit support
added by Xan Lopez at GUADEC
2007

WebKit backend is well
maintained

Seeing rising popularity

WebKit and Yelp

Yelp is the GNOME
documentation browser

Initial WebKit port completed

Maintainer Don Scorgie says

– “Blazing fast. Startup goes
from 2.8s to 1.9s.”

– “API rocks. It's like a real
gtk+ API. I can understand
what's going on in it.”

GtkPrint: Beautiful on paper

Print API
Customise

printing from
your application

(headers,
footers, page

settings coming
soon)

JavaScript
Print using the
standard JS
function

Make it awesome

Use GTK+ to provide the core UI
and shell

Use WebView to emphasise
content

Allow users to customise their
applications

Create a community around
your application

Pidgin IM client
WebKit support by Sean Egan

Host desktop widgets

GtkWidget *web_view = webkit_web_view_new ();
webkit_web_view_set_transparent (
 WEBKIT_WEB_VIEW (web_view), TRUE);

HTML5 canvas
for drawing

HTML5 local storage
for data persistance

Shell access
for local operations

D-Bus IPC
coming soon

Invent a new look and feel

Composited desktop
SVG circles

Experiment
with fun new UI
concepts

Cross-platform

Supported platforms

– GNU/Linux (X11, DirectFB)
● All major distributions (Debian and Gentoo packaging teams

in particular have helped a lot upstream)

– FreeBSD, DragonFlyBSD (X11)

– OS X (Native, X11, DirectFB)
● Imendio working to complete the native GTK+ backend

– Windows (Native, X11)
● Patches to be merged soon

JavaScriptCore C API
Integrates with the GObject API

– Stable

– Fully documented

Portable

– Installed with WebKit/GTK+

– Ships with OS X

Standalone use

– Provides a light scripting
engine for any application

Fastest mainstream JavaScript
implementation

Use it to

– Export functions to
JavaScript

– Invoke JavaScript

– Build dynamic language
bindings

Portable application code

OS X Linux Windows

WebKit/GTK+

WebKit n/a

Location-aware Web apps

External module to expose location metadata to Web apps

Implements the locationaware.org spec

Spec not final

Uses Gypsy GPS library (alternative location sources possible)

– http://folks.o-hand.com/iain/gypsy/

var geolocator = navigator.getGeolocator();
geolocator.request(function(location) {
 alert(location.latitude+', '+location.longitude);
});

WebKit and OpenMoko

OpenMoko WebKit applications

– Browser

– Feed reader

Maintained by Holger Freyther
(also a WebKit developer)

OpenMoko supports the WebKit
project by providing a build server
for continuous integration

OLPC Sugar activity

Fast
Loads fast

renders fast

Light
Small memory
footprint

WebKit and OLPC

WebKit/GTK+ Sugar activity done by Dan Winship
(Red Hat) in one day

John Palmieri compared it with the existing Mozilla-
based activity

– “uses on average 10 megs less in resident memory”

– “starts up five seconds faster”

– “feels a bit more responsive when scrolling”

– “just more aligned to our needs as a small and fast
browser”

WebKit e-paper with the Irex iLiad

Midori browser on iLiad
WebKit port by Adam Boeglin

Open questions
How do we reduce repaints?
Can we save memory for
grayscale displays?

WebKit for Maemo

Hildon
extensions

for text entry
and UI elements

4.7x
faster than
MicroB
SunSpider
JS/AJAX testsuite

Putting the Web in GTK+

Berlin, March 2008, GTK+ hackfest goals

– Enhance the GTK+ core to meet browser needs

– Extend the GTK+ toolchain with Web capabilities

GTK+ Web integration squad

– Alp Toker

– Christian Persch

The return of the online desktop?

Why did the GNOME online desktop fail?

– The data model was there

– The IPC system was in place (D-Bus)

– Did the lack of a Web content engine before 2007 kill
the online desktop?

Reviving the online desktop; a good idea?

– WebView could make the online desktop practical today

“The next big thing is the one that
makes the last big thing usable.”

Blake Ross

Announcing the offline desktop

Let users take back their data

– Provide hybrid Web/GTK+ user-interfaces as a frontend
to local and personal-area data stores

– Use GTK+ to deliver rich internet applications that aren't
riddled with branding and advertising

Pack a WebView in your application and get
started today

Get involved!

http://www.webkit.org

IRC: #webkit, #webkit-gtk / FreeNode

WebKit GTK+

http://live.gnome.org/WebKit

