

WebKit
everywhere

Alp Toker

making the web mobile

March 2008
Bossa Conf, Brazil

Web standards and features

 Full-featured SVG implementation

 HTML5 parser/renderer

 HTML5 canvas

 Fast JS/AXAX support

 Strong CSS standards support

 CSS extensions for implicit animations and
transformations

 Offline Web application support

WebCore
content engine

applications
C, C#, C++, Vala, Python, Perl

JavaScriptCore
portable C API

WebKit
public API

WebKit language bindings
 Vala bindings

– Maintained by Jürg Billeter

 Python bindings

– Created by the OLPC team

– Maintained by Jan Alonzo

 C#/CLR bindings

– Also features a JS bridge

 Perl bindings

– Available from CPAN

WebKit widget
and related classes

Language binding
features

DOM binding

JavaScript runtime
 bridge

1

2

3

Introducing WebView

 Write a browser in a dozen lines

import gtk
import webkit

view = webkit.WebView()

sw = gtk.ScrolledWindow()
sw.add(view)

win = gtk.Window(gtk.WINDOW_TOPLEVEL)
win.add(sw)
win.show_all()

view.open("http://planet.gnome.org/")
gtk.main()

WebView modes: Scrollable

 Packed in a GtkScrolledWindow

– Provides a full-featured browser engine for document
display and editing

WebView modes: Packed

 Packed directly into the UI

– Acts as an integral part of the surrounding GTK+ UI

– Place Web content in amongst GTK+ widgets

 Web content / GTK+ size request interop
(landing soon)

 Develop and design in parallel
● Let programmers work on the core
● Let designers produce UI elements using Web skills

When to use a WebView

 When do you use straight GTK+?

 When does Web content enrich the experience?

 Great power; great responsibility

 WebView isn't the right tool for every job

– Continue to use GtkTextView for light viewing and
editing

– Use GtkTreeView and GtkIconView unless you really
need a custom look

“The idea was that anybody who used
the web would have a space where
they could write and so the first
browser was an editor, it was a writer
as well as a reader.”

Tim Berners-Lee

A writer as well as a reader

 Enable WebKit's powerful content editor with one line of
code

 WebView is designed from the ground up to work as an
enhanced GtkTextView

WebView
(like GtkTextView)

WebFrame
(like GtkTextBuffer)

WebFrame
(like GtkTextBuffer)

Edit with style

 webkit_web_view_set_editable (WEB_VIEW (view), TRUE);

 Push and retrieve HTML/SVG content with simple
accessors or use the upcoming GIO streaming
interface

 Perform formatting operations

– With the basic editing command API

– Or by manipulating the upcoming GObject DOM directly

 Work on your application's killer features and leave
formatting to WebView

Using WebFonts

 SVG/TTF custom fonts are a W3C recommendation

 Apply a distinctive look without compromising usability

 Continue to internationalise with gettext and .po files

 Text selection and editing works as usual

 No installation required

@font-face {
 font-family: 'Bitstream Vera Sans';
 src: url('http://www.freedesktop.org/~alp/tmp/Vera.ttf') format(truetype);
}

h1 {
 font-family: 'Bitstream Vera Sans', sans-serif;
}

Custom fonts in action
SVG fonts
Easy to design with tools like Inkscape WebFonts

TrueType fonts on the Web

DOM bindings

 Existing DOM bindings

– ObjC DOM, used extensively in Safari/Mac

– COM DOM (new), used on Windows

 Upcoming GObject DOM features

– Complete access to the DOM (all levels)

– Stable API

LIVE DEMO

Apply settings with ease

 Use WebSettings to group settings for multiple
WebViews

 Keep granular settings per WebView or enforce
global settings when necessary
(makes porting Gecko-based applications a breeze)

WebView
widget

WebView
widget

WebSettings
(like GtkSettings)

Go asynchronous

 Use WebDecision objects to delegate actions
requiring user input or network queries

– Authentication challenges

– Navigation requests

– Script alert and print dialogs

 A dream come true for browser developers

 Allows programmers to eliminate modality

 Lets users get on with what they're doing

HTML5 video with GStreamer
Open Source

Web video without
proprietary plugins

Versatile
Create stylish DVD/DVB
players, video
conferencing tools

Perfectly native widget styling

WebKit for browser engineers

 Engine core written in a sensible dialect of C++

 Approachable to C hackers

 Follows a coherent coding style

 Project-wide refactoring and reorganisation is
encouraged

 Internal APIs are “informally” abstracted and
change frequently while the public API is strictly
stable (similar policy to the Linux kernel)

Browse with Epiphany

 Epiphany, a light-weight Web
browser for GNOME

 Originally a GTK+ UI around the
Gecko rendering engine

 Experimental WebKit support
added by Xan Lopez at GUADEC
2007

 Switching to dedicated WebKit
support for GNOME 2.24

 Talk of an Epiphany Mobile port

Make it awesome

 Use GTK+ to provide the core UI
and shell

 Use WebView to emphasise
content

 Allow users to customise their
applications

 Create a community around
your application

Pidgin IM client
WebKit support by Sean Egan

Host widgets

GtkWidget *web_view = webkit_web_view_new ();
webkit_web_view_set_transparent (
 WEBKIT_WEB_VIEW (web_view), TRUE);

HTML5 canvas
for drawing

HTML5 local storage
for data persistance

Shell access
for local operations

D-Bus IPC
coming soon

Invent a new look and feel

Composited desktop
SVG circles

Experiment
with fun new UI
concepts

Cross-platform

 Supported platforms

– GNU/Linux (X11, DirectFB)
● All major distributions (Debian and Gentoo packaging teams

in particular have helped a lot upstream)

– FreeBSD, DragonFlyBSD (X11)

– OS X (Native, X11, DirectFB)
● Imendio working to complete the native GTK+ backend

– Windows (Native, X11)
● Patches to be merged soon

JavaScriptCore C API
 Integrates with the GObject API

– Stable

– Fully documented

 Portable

– Installed with WebKit/GTK+

– Ships with OS X

 Standalone use

– Provides a light scripting
engine for any application

 Fastest mainstream JavaScript
implementation

 Use it to

– Export functions to
JavaScript

– Invoke JavaScript

– Build dynamic language
bindings

Portable application code

OS X Linux Windows

WebKit/GTK+

WebKit n/a

Location-aware Web apps

 External module to expose location metadata to Web apps

 Implements the locationaware.org spec

 Spec not final

 Uses Gypsy GPS library (alternative location sources possible)

– http://folks.o-hand.com/iain/gypsy/

var geolocator = navigator.getGeolocator();
geolocator.request(function(location) {
 alert(location.latitude+', '+location.longitude);
});

WebKit and OpenMoko

 OpenMoko WebKit applications

– Browser

– Feed reader
 Maintained by Holger Freyther

(also a WebKit developer)

 OpenMoko supports the WebKit
project by providing a build server
for continuous integration

Nokia S60 port

 Hosted on webkit.org

 Highly diverged from trunk

– No obvious way to re-sync with TOT

 Successful as a “mobile web” browser

 Falling behind the current state of the art

OLPC Sugar activity

Fast
Loads fast

renders fast

Light
Small memory
footprint

WebKit and OLPC

 WebKit/GTK+ Sugar activity done by Dan Winship
(Red Hat) in one day

 John Palmieri compared it with the existing Mozilla-
based activity

– “uses on average 10 megs less in resident memory”

– “starts up five seconds faster”

– “feels a bit more responsive when scrolling”

– “just more aligned to our needs as a small and fast
browser”

WebKit e-paper with the Irex iLiad

Midori browser on iLiad
WebKit port by Adam Boeglin

Open questions
How do we reduce repaints?
Can we save memory for
grayscale displays?

Poky Linux

Default browser
for the Poky mobile

Linux distribution

WebKit for Maemo

WebKit SDK for Maemo

http://maemo.webkit.org

 Pre-release developer packages now available

 WebKit SDK snapshot packages TBA

 A basis for new online and offline mobile RIAs

available today

Media center devices

 Set top boxes often use DirectFB

 Aim to provide a media-oriented user experience

 Integrated multimedia and web capabilities

Traditional UI

Web
browser

Web-based UI

Web
browser

Integrated
UI elements

Extend
traditional

user interfaces

... or switch to
a Web-based
main view

Putting the Web in GTK+

 Berlin, March 2008, GTK+ hackfest goals

– Enhance the GTK+ core to meet browser needs

– Extend the GTK+ toolchain with Web capabilities

 The vision...

The FOUC problem

 Flash Of Unstyled Content, typically on low
bandwidth devices

 Browser ends up showing your Web page's content
without yet having any style information

 Then, style data becomes available and the content
layout changes

 User is distracted

Fixing FOUC

 Stall the load

– Wait for all styling information to become available

 Don't stall the load

– Better user experience, but breaks sites that make
assumptions about styling availability

 Stall on-demand

– Parallelise loads and while continuing to parse

– Provides the fastest perceived load performance all
round

Optimising JS/AJAX execution

 Target: N800/N810 internet tablets

– Implement ARM ASM locking code
● Later switched to compiler intrinsics (> 10x boost in specific

cases)

– Fix alignment issues
● Pathological String alignment (~2x boost)

– Modify compilation process
● Enable better link time optimisation (< 1x boost)

Reducing footprint: ICU

 ICU Unicode library is ~10M

 Platforms shipping the full ICU

– Iphone

– OS X

 Ports using platform Unicode features instead

– GTK+ (GLib unicode)

– Qt

– Android

Input methods for mobile devices

 Virtual keyboard support

 Predictive text input

 International character composition

“The next big thing is the one that
makes the last big thing usable.”

Blake Ross

Investigating multi-pointer input

 Scale and pick out content rapidly

 Scroll by flicking

 Expose multi-point input data via the DOM, allow
web apps to interpret the data?

 Used in iPhone

 Also being developed for the GTK+ port using Multi
Pointer X (MPX)

Graphics acceleration

Get involved!

http://www.webkit.org

IRC: #webkit, #webkit-gtk / FreeNode

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

